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SUMMARY

This work intends to show that conservative upwind schemes based on a separate discretization of the
scalar solute transport from the shallow-water equations are unable to preserve uniform solute profiles in
situations of one-dimensional unsteady subcritical flow. However, the coupled discretization of the system
is proved to lead to the correct solution in first-order approximations. This work is also devoted to show
that, when using a coupled discretization, a careful definition of the flux limiter function in second-order
TVD schemes is required in order to preserve uniform solute profiles. The work shows that, in cases of
subcritical irregular flow, the coupled discretization is necessary but nevertheless not sufficient to ensure
concentration distributions free from oscillations and a method to avoid these oscillations is proposed.
Examples of steady and unsteady flows in test cases, river and irrigation are presented. Copyright q 2007
John Wiley & Sons, Ltd.
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1. INTRODUCTION

The prediction of solute mixing occurring along a stream of water is important in many applications
such as environmental or fertigation studies. The diffuse or the point release of a substance in
water is transported along the flow leading to a solute concentration distribution that affects in
different forms at different distances downstream from the input. The mechanics of mixing is
complex and, consequently, practical problems are tackled using a number of assumptions and
simplifications. In the most general problem, advection and turbulent diffusion occur in each of the
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three coordinate directions. However, in the cases where a one-dimensional flow model is justified,
such as river or channel flow, a tracer originating from a non-steady point source eventually mixes
across the channel due to velocity gradients and turbulence and in the far field, a cross-sectional
averaged concentration can be defined which is not subject to vertical and transverse concentration
gradients. The fate of this cross-sectional averaged tracer concentration is then governed by a
one-dimensional advection–dispersion equation [1, 2].

The dynamics of the one-dimensional flow and solute concentration can be studied using a
system of conservation laws that requires appropriate numerical methods. In the last decades,
shock-capturing finite volume schemes of different orders of accuracy for shallow-water equations
based on approximate Riemann solvers and well balanced to properly incorporate the influence
of bed variations and friction terms have been successfully reported [3–6]. The correct extension of
these techniques to include the advection–dispersion equation is also one of the main goals of this
work.

To obtain an accurate solution of the advective part of the transport process, a non-diffusive
numerical scheme is required. To satisfy this requirement, some authors have used semi-Lagrangian
schemes [7–9]. This option is linked to a decoupled discretization, in which the flow is solved
using a different technique. An alternative is to use Eulerian schemes of the appropriate order for
the separate system of equations [10–12]. Furthermore, Eulerian schemes can also be applied to
the coupled set of equations [13]. The two last options are analysed in this work.

A one-dimensional shallow-water model including solute transport is formulated both form-
ing a coupled and a decoupled system of equations. It is necessary as a first requirement to
evaluate to what extent numerical schemes are able to preserve uniform initial solute profiles
in irregular geometries or unsteady flow conditions. As a second goal, a suitable conservative
scheme must be able to ensure bounded concentration values. It is not a trivial task since the
solute concentration is not one of the conserved variables in our equation system. Several up-
wind finite volume techniques are presented and a few options considered for their numerical
resolution.

The advection–diffusion of a gaussian profile with analytical solution is used as a test case to
evaluate the performance of all the schemes discussed. Next the ideal dambreak unsteady flow with
uniform solute concentration and solute discontinuity is used to evaluate the ability of the methods
to preserve good properties in the solute distributions. Furthermore, a dambreak flow over sloping
and rough bed is used for evaluating the ability of the numerical schemes and approximations
to advect an initial square pulse of concentration. Two practical applications of solute transport,
unsteady flow and solute transport on an impervious irrigation border and pollutant spill in a river,
are finally presented.

2. FLOW AND TRANSPORT EQUATIONS

The one-dimensional system formed by the cross-sectional averaged liquid mass conservation, mo-
mentum balance in the mainstream direction and solute transport can be expressed in conservation
form as

�U
�t

+ �Fc

�x
+ �D

�x
=Sc (1)
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where U is the vector of conserved variables, Fc the flux vector, Sc the source term vector, and D
the diffusion:

U=

⎛
⎜⎜⎝

A

Q

As

⎞
⎟⎟⎠ , Fc =

⎛
⎜⎜⎜⎝

Q

gI1 + �Q2

A

Qs

⎞
⎟⎟⎟⎠ , Sc =

⎛
⎜⎝

0

g[I2 + A(S0 − Sf)]
0

⎞
⎟⎠

D=

⎛
⎜⎜⎜⎝

0

0

−KA
�s
�x

⎞
⎟⎟⎟⎠

(2)

with A being the wetted cross-section, Q the discharge, s the cross-sectional average solute
concentration, g the gravity constant, S0 the longitudinal bottom slope, Sf the longitudinal friction
slope, K the diffusion coefficient, and I1 and I2 the pressure forces

I1 =
∫ h

0
(h − z)b dz, I2 =

∫ h

0
(h − z)

�b
�x

dz (3)

with h being the water depth, b the cross-sectional width, and � a coefficient resulting from the
cross-sectional averaging of the velocity

�= A

Q2

∫
A

v2x dA (4)

where vx is the longitudinal component of the velocity at any point of the cross-section. From the
average definition, ��1. When the flow velocity can be considered uniform in the cross-section,
as in all the examples presented in this work, � ≈ 1. However, in cases of irregular or compound
cross-sections, it is known that � can reach to values considerably larger so that a model for the
velocity distribution in the cross-section must be used as in [14, 15].

The friction slope is widely modelled using of the Gauckler–Manning law [16, 17]:

Sf = n2Q|Q|P4/3

A10/3
(5)

where P is the cross-sectional wetted perimeter and n the Gauckler–Manning roughness coefficient.
The diffusion coefficient contains all the information related to molecular or viscous diffusion,
turbulent diffusion and dispersion derived from the cross-sectional and turbulent averaging process.
The model proposed by Rutherford [2] will be used

K = 10
√
gPA|Sf| (6)

The system of equations can be expressed in a non-conservative form by taking into account

dFc(x,U)

dx
= �Fc

�x
+ J

�U
�x

(7)
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with J being the flux Jacobian

J= �Fc

�U
=

⎛
⎜⎜⎝

0 1 0

c2 − �u2 2�u 0

−us s u

⎞
⎟⎟⎠ (8)

where u = Q/A is the cross-sectional average velocity, c= √
gA/B the velocity of the infinitesimal

waves and B the cross-sectional top width. Inserting in (1)

�U
�t

+ J
�U
�x

+ �D
�x

=Snc (9)

with Snc being the non-conservative source term

Snc =Sc − �Fc

�x
=

⎛
⎜⎜⎜⎜⎝

0

c2
�A
�x

− Au2
��

�x
− gA

(
�zs
�x

+ Sf

)

0

⎞
⎟⎟⎟⎟⎠ (10)

where zs is the water surface level.
The Jacobian matrix can be made diagonal

J=PKP−1, P=
⎛
⎜⎝

1 1 0

�1 �2 0

s s 1

⎞
⎟⎠ , K=

⎛
⎜⎝

�1 0 0

0 �2 0

0 0 �3

⎞
⎟⎠ (11)

with K being the eigenvalues diagonal matrix, P the diagonalizer matrix and �i the Jacobian
eigenvalues corresponding to the characteristic propagation celerities

�1 = �u +
√
c2 + (�2 − �)u2, �2 = �u −

√
c2 + (�2 − �)u2, �3 = u (12)

The eigenvalues are related to the flow regime:

• �1�2>0 ⇒ �u2>c2 ⇒ supercritical flow.
• �1�2<0 ⇒ �u2<c2 ⇒ subcritical flow.

By defining the differential characteristic variables dW as

dW=P−1 dU (13)

and left-multiplying the non-conservative equation (9) by P−1, the characteristic differential equa-
tions are obtained:

�W
�t

+ K�W
�x

+ P−1 �D
�x

=P−1Snc (14)

Lastly, a simple and very convenient form of the equations is the quasi-conservative form. Taking
into account that

d I1
dx

= I2 + A
dzs
dx

(15)
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and inserting in (1)

�U
�t

+ �Fqc

�x
+ �D

�x
=Sqc (16)

with Fqc and Sqc being the quasi-conservative flux and source terms

Fqc =

⎛
⎜⎜⎜⎝

Q

�Q2

A

Qs

⎞
⎟⎟⎟⎠ , Sqc =

⎛
⎜⎜⎜⎜⎝

0

−gA

(
dzs
dx

+ Sf

)

0

⎞
⎟⎟⎟⎟⎠ (17)

It must be stressed that, under form (16), the equations do not furnish the correct propagation
information. The Jacobian matrix of the quasi-conservative form is

Jqc = �Fqc

�U
=

⎛
⎜⎜⎝

0 1 0

−�u2 2�u 0

−us s u

⎞
⎟⎟⎠ (18)

with the eigenvalues

�1 = (� +
√

�2 − �)u, �2 = (� −
√

�2 − �)u, �3 = u (19)

that do not correspond to the characteristic celerities of propagation of the information in this
medium as in (12).

3. SEPARATE DISCRETIZATION OF THE SOLUTE TRANSPORT EQUATION

The simplest and most common method to solve the system of equations (2) is to discretize
the mass and momentum flow equations separately, in each time step, from the solute transport
equation. Keeping aside the method applied to the flow equations, let us consider the conservative
form of the transport equation

�U
�t

+ �F
�x

= 0 (20)

U = As being the conserved variable and F = uAs − KA(�s/�x) the flux. This flux can be de-
composed into a flux T due to advection and another flux D due to diffusion. In this case,

F = T + D, T = uAs, D =−KA
�s
�x

(21)

we shall next concentrate on the description and discussion of different numerical methods suitable
for the discretization of this equation alone.
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3.1. First-order upwind scheme with implicit diffusion

Upwind schemes are based on a spatial discretization according to the sign of the characteristic
celerities of propagation in the system. Hence, spatial derivatives are evaluated at every point
using a computational cell larger than the correct region of influence of that point. Combining the
first-order explicit upwind scheme applied with the advection and the centred implicit scheme to
solve the diffusion, both in the conservative forms, the following scheme is obtained:

�Un
i =−�t

�x
[(�T+)ni−(1/2) + (�T−)ni+(1/2) + Dn+�

i+(1/2) − Dn+�
i−(1/2)] (22)

with �T+ and �T− associated with propagation velocities positive and negative, respectively,

u± = 1
2 (u ± |u|), �T± = u±

u
�T (23)

where the notation f n+� = � f n+1 + (1 − �) f n has been used.

3.2. Second order in space TVD scheme with implicit diffusion

Combining the second order in space TVD explicit scheme applied to the advection and the centred
implicit scheme to solve the diffusion, both in the conservative form, the following second order
in space TVD semi-implicit scheme is obtained:

�Un
i = −�t

�x

{
(�T+)ni−(1/2) + (�T−)ni+(1/2) + Dn+�

i+(1/2) − Dn+�
i−(1/2) + 1

2
[(�+�T+)ni−(1/2)

− (�+�T+)ni−(3/2) + (�−�T−)ni+(1/2) − (�−�T−)ni+(3/2)]
}

(24)

where�+ and�− are the flux limiter functions that are defined to combine the second-order spatial-
centred and upwind schemes, to preserve the second order and, according to properties (A21), to
avoid the numerical oscillations. In order to produce a second-order scheme, the dependence of
flux limiter functions is defined as follows [18]:

�+
i+(1/2) =�

(
�T+

i+(3/2)

�T+
i+(1/2)

)
, �−

i+(1/2) = �

(
�T−

i−(1/2)

�T−
i+(1/2)

)
(25)

3.3. Second order in space and time TVD scheme with implicit diffusion

By combining the Sweby second order in space and time TVD explicit scheme [19] applied to the
advection and the centred implicit scheme to solve the diffusion, both in conservative form, the
following scheme is obtained:

�Un
i = −�t

�x

{
(�T+)ni−(1/2) + (�T−)ni+(1/2) + Dn+�

i+(1/2) − Dn+�
i−(1/2) + 1

2
[(�+�E+)ni−(1/2)

−(�+�E+)ni−(3/2) +(�−�E−)ni+(1/2) − (�−�E−)ni+(3/2)]
}

(26)
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with

�E± = (1 ∓ �)�T±, � = u
�t

�x
, �± = 1

2 (� ± |�|) (27)

It is worth signalling that, although this scheme is named second order in space and time, this is
not strictly true since it is not second order in time for the diffusion term. The dependence of the
flux limiter functions is defined as [18]

�+
i+(1/2) =�

(
(�E+)ni+(3/2)

(�E+)ni+(1/2)

)
, �−

i+(1/2) = �

(
(�E−)ni−(1/2)

(�E−)ni+(1/2)

)
(28)

4. COUPLED DISCRETIZATION OF THE SYSTEM

In what follows, our interest will be focused on the analysis of the discretization of the coupled
system of equations using the most efficient techniques from Section 3: the first-order upwind and
the second order in space and time TVD. Despite the apparently unnecessary extra complexity of
this approach, it will prove to be the only method for improving the accuracy of the numerical
solution in many cases, as previously reported [13].

4.1. First-order upwind scheme with implicit diffusion

According to the form of the scheme based on the characteristic form (A8), the following decom-
position matrices are defined:

U± =

⎛
⎜⎜⎝

�±
1 0 0

0 �±
2 0

0 0 �±
3

⎞
⎟⎟⎠ (29)

and, at the same time, the upwind matrices associated with the propagation directions:

�±
i = 1

2 [1 ± sign(�i )], X± =PU±P−1, G± =X±G (30)

In order to deal with transcritical problems in which the flow passes from subcritical to supercritical,
the introduction of an artificial viscosity similar to the one proposed by Harten and Hyman [20]
is necessary. This scheme becomes

�Un
i =�t

[(
G+ − �

�U
�x

)n

i−(1/2)
+
(
G− + �

�U
�x

)n

i+(1/2)
− 1

�x
(Dn+�

i+(1/2) − Dn+�
i−(1/2))

]
(31)

with � an artificial viscosity coefficient defined as in [21]

�ni+(1/2) = max
k

{ 1
4 [�(�k) − 2|�k |]ni+(1/2) if(�k)

n
i <0 and (�k)

n
i+1>0

0 otherwise
(32)

Note that, for supercritical flow, X+ = 1, X− = 0 and this discretization is identical to (22). The
same is not true for subcritical flow.
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We shall postulate that the TVD condition for this combined scheme is governed by the most
restrictive among the different eigenvalues, that is,

0���1, �t�min

⎡
⎣ �x

�|u| +
√

(�2 − �)u2 + c2
,

�x2

|u|�x + (1 − �)2K

⎤
⎦ (33)

4.2. Second order in space and time TVD scheme with implicit diffusion

The simplest form of extending the described scalar second order in space and time TVD scheme
(26) to the coupled system of equations is

�Un
i = �t

{(
G+ − �

�U
�x

)n

i−(1/2)
+
(
G− + �

�U
�x

)n

i+(1/2)
− 1

�x
(Dn+�

i+(1/2) − Dn+�
i−(1/2))

+ 1

2
[(W+E+)ni−(1/2) − (W+E+)ni−(3/2) + (W−E−)ni+(1/2) − (W−E−)ni+(3/2)]

}
(34)

with the second-order vectors being

E± =
(
1 ∓ J

�t

�x

)
G± (35)

The flux limiting matrices are defined as

W±
i+(1/2) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�

(
(E±)1i+(1/2)±1

(E±)1i+(1/2)

)
0 0

0 �

(
(E±)2i+(1/2)±1

(E±)2i+(1/2)

)
0

0 0 �

(
(E±)3i+(1/2)±1

(E±)3i+(1/2)

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(36)

with (E±)i being the i component of vector E±. This new form of defining the flux limiting
matrices, based on the components of the second-order vector, will be called vectorial limiting
discretization.

Another alternative is to define the second-order vectors as

L± =
(
1 ∓ K± �t

�x

)
P−1G± (37)
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Then, the second order in space and time TVD scheme is written as

�Un
i = �t

{(
G+ − �

�U
�x

)n

i−(1/2)
+
(
G− + �

�U
�x

)n

i+(1/2)
− 1

�x
(Dn+�

i+(1/2) − Dn+�
i−(1/2))

+ 1

2
[(PW+L+)ni−(1/2) − (PW+L+)ni−(3/2) + (PW−L−)ni+(1/2) − (PW−L−)ni+(3/2)]

}

(38)

and the flux limiting matrices are

W±
i+(1/2) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�

(
(L±)1i+(1/2)±1

(L±)1i+(1/2)

)
0 0

0 �

(
(L±)2i+(1/2)±1

(L±)2i+(1/2)

)
0

0 0 �

(
(L±)3i+(1/2)±1

(L±)3i+(1/2)

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(39)

This second form of defining the flux limiting matrices, more in the line of the characteristic form
of scheme (A7), will be named characteristic limiting discretization.

Using that in the scalar case the TVD conditions for this scheme are identical to those for the
first-order scheme, we shall postulate that this scheme is TVD whenever (33) holds.

5. PRESERVING BOUNDED SOLUTION SCHEMES

5.1. Preserving initial uniformity schemes

When the initial concentration as well as the boundary conditions are uniform, (�s/�x = 0), the
third of the conservation equations (1) becomes

�(As)

�t
+ �(Qs)

�x
= �

�x

(
KA

�s
�x

)
= 0 (40)

By developing the derivatives and using the mass conservation equation

A
�s
�t

+ s

(
�A
�t

+ �Q
�x

)
= 0 ⇒ �s

�t
= 0 (41)

indicating that, under these conditions, the concentration must stay constant in time whatever
be the flow conditions. A numerical scheme unable to reproduce this important property will be
unacceptable.

This case will be solved using the first-order upwind scheme with decoupled discretization,
that is, solving in every time step first the system of mass and momentum flow equations (two
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first components of equation system (31)) and, separately, (22). With � = 0 and assuming positive
discharges(

A

Q

)n+1

i

=
(
A

Q

)n

i

− �t

⎧⎨
⎩
[
X− �

�x

(
Q

H

)]n
i+(1/2)

+
[
X+ �

�x

(
Q

H

)]n
i−(1/2)

⎫⎬
⎭

(As)n+1
i = (As)ni − �t

�x
[(Qs)ni − (Qs)ni−1] + 1

�x

[(
KA

�s

�x

)n

i+(1/2)
−
(
KA

�s

�x

)n

i−(1/2)

] (42)

where, in order to simplify the notation, the following has been defined:

�H

�x
= gA

(
�zs
�x

+ Sf

)
+ �

�x

(
�Q2

A

)
(43)

With uniform concentration initial conditions sni = const. = s0

An+1
i sn+1

i = An
i s0 − s0

�t

�x
(Qn

i − Qn
i−1) (44)

In this case, the diagonalizer matrix is

P=
(

1 1

�1 �2

)
(45)

For supercritical flow X+ = 1, X− = 0 so that

An+1
i = An

i − �t

�x
(Qn

i − Qn
i−1), sn+1

i = s0 (46)

therefore, the scheme is able to keep uniform the concentration for unsteady supercritical flows.
However, in the case of subcritical flow

X+ = P

(
1 0

0 0

)
P−1 = 1

�1 − �2

( −�2 1

−�1�2 �1

)

X− = P

(
0 0

0 1

)
P−1 = 1

�1 − �2

(
�1 −1

�2�1 −�2

) (47)

so that

An+1
i = An

i − �t

�x

[(−�2�Q + �H

�1 − �2

)n

i−(1/2)
+
(

�1�Q − �H

�1 − �2

)n

i+(1/2)

]

sn+1
i =

An
i − �t

�x
(Qn

i − Qn
i−1)

An
i − �t

�x

[(−�2�Q + �H

�1 − �2

)n

i−(1/2)
+
(

�1�Q − �H

�1 − �2

)n

i+(1/2)

]s0
(48)
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Hence, for a general case, it cannot be assumed that sn+1
i = s0 and the scheme, although conservative

and stable, produces a distortion in the uniform concentration distribution for unsteady subcritical
flow. This is a non-trivial handicap for conservative schemes using decoupled discretization of the
transport equation.

If the first-order upwind scheme is applied to the coupled system (31) with � = 0, assuming
positive discharge and uniform concentration initial conditions⎛

⎜⎝
A

Q

As

⎞
⎟⎠
n+1

i

=
⎛
⎜⎝

A

Q

As

⎞
⎟⎠
n

i

− �t

⎧⎪⎪⎨
⎪⎪⎩
⎡
⎢⎣X− �

�x

⎛
⎜⎝
Q

H

T

⎞
⎟⎠
⎤
⎥⎦
n

i+(1/2)

+
⎡
⎢⎣X+ �

�x

⎛
⎜⎝
Q

H

T

⎞
⎟⎠
⎤
⎥⎦
n

i−(1/2)

⎫⎪⎪⎬
⎪⎪⎭ (49)

In this case, P is defined as in (11). For supercritical flow X+ = 1, X− = 0 so that

An+1
i = An

i − �t

�x
(Qn

i − Qn
i−1), sn+1

i = s0 (50)

and the scheme reproduces the uniform concentration during the unsteady calculation. For sub-
critical flow

X+ = P

⎛
⎜⎝
1 0 0

0 0 0

0 0 1

⎞
⎟⎠P−1 = 1

�1 − �2

⎛
⎜⎝

−�2 1 0

−�1�2 �1 0

−�1s s �1 − �2

⎞
⎟⎠

X− = P

⎛
⎜⎝
0 0 0

0 1 0

0 0 0

⎞
⎟⎠P−1 = 1

�1 − �2

⎛
⎜⎝

�1 −1 0

�1�2 −�2 0

�1s −s 0

⎞
⎟⎠

(51)

so that

An+1
i = An

i − �t

�x

[(−�2�Q+�H

�1 − �2

)n

i−(1/2)
+
(

�1�Q − �H

�1 − �2

)n

i+(1/2)

]

sn+1
i =

An
i s

n
i − �t

�x

[(−�1s�Q+s�H+(�1 − �2)�T

�1 − �2

)n

i−(1/2)
+
(

�1s�Q − s�H

�1 − �2

)n

i+(1/2)

]

An
i − �t

�x

[(−�2�Q+�H

�1 − �2

)n

i−(1/2)
+
(

�1�Q − �H

�1 − �2

)n

i+(1/2)

]

=
An
i − �t

�x

[(−�2�Q+�H

�1 − �2

)n

i−(1/2)
+
(

�1�Q − �H

�1 − �2

)n

i+(1/2)

]

An
i − �t

�x

[(−�2�Q+�H

�1 − �2

)n

i−(1/2)
+
(

�1�Q − �H

�1 − �2

)n

i+(1/2)

]s0 = s0

(52)

and the scheme is also able to guarantee uniform concentration during the unsteady calculation.
It is easy to show that this also occurs while using the TVD schemes with characteristic limiting

discretization (38). However, the vectorial limiting discretization (34) does not guarantee that
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the scheme preserves uniformity in the transported scalar distribution, see Figure 7. Hence, even
though it might seem an unnecessary complication in the procedure, the coupled formulation of
the system of equations and the characteristic limiting discretization are crucial to improve the
quality of the solutions in unsteady solute transport problems.

5.2. Preserving bounded solution schemes

A little transformation in the conservative transport equation, that involves the use of the mass
conservation equation, leads to the characteristic form of the transport equation:

�s
�t

+ u
�s
�x

= 1

A

�
�x

(
KA

�s
�x

)
(53)

In the absence of diffusion (K = 0), this is a scalar wave equation

�s
�t

+ u
�s
�x

= 0 (54)

with exact solution given an initial solute distribution s0(x), representing the pure advection

s(x, t) = s0

(
x −

∫ t

0
u(x ′, t ′) dt ′

)
,

dx ′

dt ′
= u(x ′, t ′) (55)

Therefore, the solution of the equation contains the same extrema in concentration that are present
in the initial conditions. The numerical schemes that have the property of being able to preserve
this condition will be called ‘preserving bounded solution’ schemes. Obviously, the methods that
do not preserve a uniform concentration are not able to meet these new property.

For instance, a discontinuous initial concentration distribution with uniform values at both sides
of the discontinuity is represented in Figure 1. If a numerical scheme that preserves the bounded
solution is sought, the following conditions must hold:

sni �sn+1
i �sni+1, sni �sn+1

i �sn+1
i+1 (56)

We shall first consider the first-order upwind scheme with coupled discretization in order to
study whether it meets (56). For supercritical flow (G+ =G, G− = 0) in this case

An+1
i = An

i − �t

�x
�Qn

i−(1/2), (As)n+1
i = (As)ni − �t

�x
�(Qs)ni−(1/2)

An+1
i+1 = An

i+1 − �t

�x
�Qn

i+(1/2), (As)n+1
i+1 = (As)ni+1 − �t

�x
�(Qs)ni+(1/2)

(57)

Figure 1. Discontinuous solute concentration distribution with a jump between nodes i and i + 1.
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Taking into account that

sni−1 = sni−(1/2) = sni �sni+1 = sni+(3/2) = sni+2 (58)

solving the solute concentrations in (57)

sn+1
i = sni , sn+1

i+1 =
(As)ni+1 − �t

�x
[(Qs)ni+1 − (Qs)ni ]

An
i+1 − �t

�x
�Qn

i+(1/2)

(59)

This solution satisfies (56) since

sn+1
i+1 =

(As)ni+1 − �t

�x
[(Qs)ni+1 − (Qs)ni ]

An
i+1 − �t

�x
�Qn

i+(1/2)

�
(As)ni+1 − �t

�x
[(Qs)ni+1 − Qn

i s
n
i+1]

An
i+1 − �t

�x
�Qn

i+(1/2)

= sni+1

sni � sn+1
i+1 ⇔ sni

(
An
i+1 − �t

�x
�Qn

i+(1/2)

)
�(As)ni+1 − �t

�x
[(Qs)ni+1 − (Qs)ni ]

⇔ sni

(
A − �t

�x
Q

)n

i+1
�
(
A − �t

�x
Q

)n

i+1
sni+1 ⇔ uni+1

�t

�x
�1

(60)

and this holds whenever the scheme stability condition (33) holds.
In cases of subcritical flow, an artificial diffusion will be added to the first-order upwind

scheme with coupled discretization so that even in the absence of physical diffusion, the following
decomposition will be applied:

GL
i+(1/2) = [G+ − V]ni+(1/2), GR

i+(1/2) = [G− + V]ni+(1/2), V= − 1

�x

⎛
⎜⎝

0

0

��s

⎞
⎟⎠

n

i+(1/2)

(61)

with � a strictly positive (��0) artificial diffusion coefficient. We shall next state the conditions
over this parameter for the scheme to satisfy (56). Applying the scheme to our problem

An+1
i = An

i − �t

�x
[(�Q+)ni−(1/2) + (�Q−)ni+(1/2)]

An+1
i+1 = An

i+1 − �t

�x
[(�Q+)ni+(1/2) + (�Q−)ni+(3/2)]

(As)n+1
i = (As)ni − �t

�x
[�(Qs)ni−(1/2) − (s�Q− − ��s)ni−(1/2) + (s�Q− − ��s)ni+(1/2)]

(As)n+1
i+1 = (As)ni+1 − �t

�x
[�(Qs)ni+(1/2) − (s�Q− − ��s)ni+(1/2) + (s�Q− − ��s)ni+(3/2)]

(62)

where, for the sake of simplicity in the notation, the following has been used:

�Q+ = −�2�Q + �H

�1 − �2
, �Q− = �1�Q − �H

�1 − �2
(63)
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Taking into account that

[�(Qs) − s�Q−]ni+(1/2) = (Q�s + s�Q − s�Q−)ni+(1/2) = (Q�s + s�Q+)ni+(1/2) (64)

using (58) and solving the concentrations:

sn+1
i =

(As)ni − �t

�x
[sni �(Q+)ni−(1/2) + (s�Q− − ��s)ni+(1/2)]

An
i − �t

�x
[(�Q+)ni−(1/2) + (�Q−)ni+(1/2)]

sn+1
i+1 =

(As)ni+1 − �t

�x
[(Q�s)ni+(1/2) + (s�Q+ + ��s)ni+(1/2) + sni+1�(Q−)ni+(3/2)]

An
i+1 − �t

�x
[(�Q+)ni+(1/2) + (�Q−)ni+(3/2)]

(65)

Substituting these expressions in conditions (56), the inequalities hold provided that

�ni+(1/2) � (�Q−)ni+(1/2)

sni+(1/2)−sni
sni+1−sni

, �ni+(1/2)�−Qn
i+(1/2)+(�Q+)ni+(1/2)

sni+1 − sni+(1/2)

sni+1 − sni

�t �
An+1
i �x

�ni+(1/2) − (�Q−)ni+(1/2)

sni+(1/2) − sni
sni+1 − sni

�t �
An+1
i+1 �x

�ni+(1/2) + Qn
i+(1/2) − (�Q+)i+(1/2)

sni+1 − sni+(1/2)

sni+1 − sni

(66)

Hence, the artificial diffusion coefficient can be defined as

�ni+(1/2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

max

[
0, (�Q−)ni+(1/2)

sni+(1/2) − sni
sni+1 − sni

,

−Qn
i+(1/2) + (�Q+)ni+(1/2)

sni+1 − sni+(1/2)

sni+1 − sni

]
if �u2<c2

0 if �u2�c2

(67)

Using this, the right-hand side quantities in the two last inequalities (66) are strictly positive, so
that the scheme can meet all the necessary conditions to preserve the bounded solution by reducing
the time step if necessary. It can also be proved that the same conditions also keep a solution
bounded with the opposite sign in the discontinuity, that is,

sni �sn+1
i �sni+1, sni �sn+1

i �sn+1
i+1 (68)

Since a series of discontinuities is a typical spatial approximation in a discretization, the above
conditions can be considered sufficient for keeping bounded any initial distribution.
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Given that the second order in space and time TVD scheme reduces to the first-order upwind
scheme in the vicinity of discontinuities, the same artificial diffusion coefficient will be applied.
Then using, for instance, the characteristic limiting discretization of the flux limiter, the scheme
with artificial diffusion is

�Un
i = �t

{(
G+ − �

�U
�x

− V
)n

i−(1/2)
+
(
G− + �

�U
�x

+ V
)n

i+(1/2)
− 1

�x
(Dn+�

i+(1/2) − Dn+�
i−(1/2))

+ 1

2
[(PW+L+)ni−(1/2)−(PW+L+)ni−(3/2)+(PW−L−)ni+(1/2)−(PW−L−)ni+(3/2)]

}
(69)

6. BOUNDARY CONDITIONS

A correct numerical model for unsteady flow problems must be based not only on a conservative
and accurate numerical scheme, but also on an adequate procedure to discretize the boundary
conditions. The theory of characteristics provides clear indications about the number of necessary
external boundary conditions to define a well-posed problem [18].

For the water flow, two external physical boundary conditions are required at the inlet and two
numerical boundary conditions are required at the outlet in cases of supercritical flow; however,
both a physical and a numerical boundary condition at the inlet and at the outlet are necessary in
cases of subcritical flow. The most usual physical boundary conditions at the inlet are a discharge
hydrograph Q(t) or a water depth limnigraph h(t) in the case of subcritical flow and both together
Q(t), h(t) in the case of supercritical flow. At the outlet, the most common practices to use are
a rating curve of the type Q = Q(h) or a limnigraph h(t). Critical outlet or closed outlet can be
considered as particular cases. For the solute transport, a physical boundary condition at the inlet,
the most usual being a concentration input s(t), and a numerical boundary condition at the outlet
are required.

The method of global mass conservation [22, 23] is based on enforcing the integral form of the
mass conservation extended to all the computational domains in combination with a conservative
scheme for the interior points to generate the numerical boundary condition. In a domain discretized
using N cells, if a conservative scheme defined by a nodal flux FT

i is used all over the domain,
the cross-sectional increments predicted in one time step are

�An
i =−�t

�x
(�QR

i+(1/2) + �QL
i−(1/2)), �(As)ni = −�t

�x
(�TR

i+(1/2) + �T L
i−(1/2)) (70)

Therefore, the total numerical water volume �V n and solute mass �Mn variations produced by
the scheme are, neglecting contributions from outside cells (�FL

1/2 = �FR
N+(1/2) = 0),

�V n =
N∑
i=1

�An
i �x = − �t

N∑
i=1

(�QL
i−(1/2) + �QR

i+(1/2)) = �t (QT
1 − QT

N )

�Mn =
N∑
i=1

�(As)ni �x = − �t
N∑
i=1

(�T L
i−(1/2) + �TR

i+(1/2)) = �t (T T
1 − T T

N )

(71)
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Since the scheme used is conservative, the variations are only due to the boundaries and can be
split into numerical contributions at the inlet and at the outlet in the following form:

�V n = �V n
in + �V n

out, �V n
in = �t QT

1 , �V n
out =−�t QT

N

�Mn = �Mn
in + �Mn

out, �Mn
in = �tT T

1 , �Mn
out = −�tT T

N

(72)

If the physical boundary condition are, for instance, a certain water volume �V phy or solute mass
�Mphy inputs at the inlet or at the outlet, in order to ensure the global mass conservation of the
scheme, the numerical mass increments must be corrected. This is achieved by means of additional
increments �A and �(As) at the inlet or at the outlet, that must be added to those previously
obtained by the numerical scheme (70), so that

�V phy
in = �Aa

1�x + �t QT
1 , �V phy

out = �Aa
N�x − �t QT

N

�Mphy
in = �(As)a1�x + �tT T

1 , �Mphy
out = �(As)aN�x − �tT T

N

(73)

Since all the schemes considered meet FT
i = (Fc)ni , the additional increments are

�Aa
1 = �V phy

in − �t Qn
1

�x
, �Aa

N = �V phy
out + �t Qn

N

�x

�(As)a1 = �Mphy
in − �t (Qs)n1

�x
, �(As)aN = �Mphy

out + �t (Qs)nN
�x

(74)

More details on the use of these conditions in different particular cases can be found in [23].

7. ANALYTICAL SOLUTIONS TO THE ADVECTION–DIFFUSION EQUATION

7.1. Advection–diffusion of a gaussian profile

There are cases where the advection–diffusion equation can be solved analytically. These cases
are very useful to validate the numerical solutions. Considering constant the cross-sectional area,
the velocity and the diffusion coefficient as constants, the linearized equation is obtained:

�s
�t

+ u
�s
�x

= K
�2s
�x2

(75)

With an initial gaussian profile, analytical solutions to this equation can be obtained:

s(x, t) = s0 + s1√
1 + 4aK t

exp

[
−a(x − x0 − ut)2

1 + 4aK t

]
(76)

We shall first consider a case of pure diffusion of a profile with s0 = 0.2 kg/m3, s1 = 0.6 kg/m3,
a = 0.04m−2, u = 0m/s, K = 0.2m2/s and x0 = 50m after 250 s, as represented in Figure 2(a),
and the propagation of a profile with s0 = 0.1 kg/m3, s1 = 0.8 kg/m3, a = 0.01m−2, u = 1m/s,
K = 0.2m2/s and x0 = 20m after 60 s, as represented in Figure 2(b). To simulate the profiles,
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Figure 2. (a) Pure diffusion and (b) advection–diffusion of a gaussian profile.
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Figure 3. Pure diffusion of a gaussian profile with the implicit centred scheme
for different values of � and �t .

a grid with �x = 1m will be used. The numerical results for the pure diffusion case, shown in
Figure 3, indicate that the explicit scheme is the most accurate for the diffusion. The implicit
scheme with � = 1 presents a slight antidiffusive tendency that becomes more noticeable as the
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Figure 4. Advection–diffusion of a gaussian profile using the schemes: (a) first-order upwind explicit,
(b) second-order in space TVD and (c) second order in space and time TVD with different time-step

sizes. In (a)–(c) �t = 0.5 s is used.

time-step size increases. The numerical antidiffusivity decreases with the parameter � although,
for large time steps, the TVD criterion can be violated in this case and numerical oscillations may
appear (Figure 3(d)). In order to simultaneously avoid numerical oscillations and minimize the
antidiffusivity, in what follows the smallest value of � compatible with the TVD conditions (A26)
and (A28) will be used:

• First order and second order in space and time TVD with implicit diffusion schemes

� = max

[
0, 1 −

(
�x

�t
− |u|

)
�x

2K

]
(77)

• Second order in space TVD with implicit diffusion scheme

� = max

{
0, 1 −

[
�x

�t
− |u|

(
1 + 1

2
max(�)

)]
�x

2K

}
(78)
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Figure 5. Ideal dambreak depth with the schemes of (a) first-order upwind, (b) and (c) second order in
space and time TVD with different flux limiters ((b) ‘Minmod’ and (c) ‘Superbee’).

With these definitions for � the time-step size restrictions due to diffusion are eliminated and the
Courant–Friedrichs–Lewy (CFL) number is defined as

�t =CFLmin
i

⎡
⎣ �x

�|u| +
√
c2 + (�2 − �)u2

⎤
⎦
n

i

(79)

Figure 4 is a plot of the advection–diffusion results. It can be seen that, for the first-order
upwind scheme, the antidiffusivity of the implicit discretization of the diffusion counterbalances
the numerical diffusion inherent to the first-order advection scheme leading to an acceptable result.
However, the antidiffusivity adds up with the antidiffusivity inherent to the second order in space
TVD scheme, producing results of worse quality than the first-order approach, especially with
the ‘Superbee’ limiter. If, at the same time, the increased complexity and reduced size of the
time steps required by this scheme are considered, it can be discarded for transport problems.
On the other hand, the second order in space and time TVD scheme provides the most accurate
results, almost independently of the flux limiter used, with a slight diffusive tendency using the
‘Minmod’ function and a slight antidiffusive tendency when using the ‘Superbee’ limiter.
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Figure 6. Ideal dambreak concentration with the separated discretization and the schemes of
(a) first-order upwind, (b) and (c) second order in space and time TVD with different flux

limiters ((b) ‘Minmod’ and (c) ‘Superbee’).

7.2. Ideal dambreak with uniform solute concentration and with solute discontinuity

The ideal dambreak problem is one of the classical examples used as test cases for unsteady shallow-
water flow simulations. The reason is that for flat and frictionless bottom, rectangular cross-section
and no diffusion, the problem defined by zero initial velocity and initial discontinuities in the water
depth and solute concentration has an exact solution [24].

A rectangular channel 200m long and 1m wide has been considered with an initial depth ratio
1:0.1m. A grid spacing of �x = 2m and CFL= 0.9 was used for all the simulations. The plots
in Figure 5 show the numerical solution for the water depth from three schemes versus the exact
solution for t = 20 s.

A second case corresponds to the same dambreak discontinuity together with a uniform initial
solute concentration of 1 kg/m3. Figure 6 displays the concentration results for t = 20 s using the
separated discretization. None of the numerical schemes is able to keep the concentration uniform
as time progresses. Figure 7 shows the results obtained with the coupled discretization for the
same test case. The first-order upwind scheme preserves the uniform concentration as well as the
second-order TVD scheme with different flux limiters, if the characteristic limiting formulation is
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Figure 7. Ideal dambreak concentration with the coupled discretization and the schemes of (a) first-order
upwind: (b)–(e) second order in space and time TVD with (b) and (c) characteristic, (d) and (e) vectorial

limiting discretization; (b) and (d) ‘Minmod’, (c) and (e) ‘Superbee’ flux limiter.

used. When the vectorial limiting discretization is used for the limiters, the numerical solution is
not free from oscillations.

As a third dambreak test case, an initial discontinuity in the concentration of 1 : 0 kg/m3 in
the same location as the depth jump has been considered. Figure 8 shows the results obtained
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without artificial diffusion and the characteristic limiting discretization for: (a) the first-order upwind and
the second order in space and time schemes with the flux limiter; (b) ‘Minmod’; and (c) ‘Superbee’.
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at t = 2 s using the coupled discretization with and without the artificial diffusion described in
Section 7. It is clear that without the artificial diffusion slight numerical oscillations appear near the
front and that they disappear when using artificial diffusion. Figure 9 shows the results provided
by the schemes using the coupled discretization, artificial diffusion and characteristic limiting
discretization for t = 20 s. The first-order scheme produces more numerical damping than the
second-order schemes as expected. Among the limiting functions, ‘Superbee’ appears slightly
more accurate than ‘Minmod’.

8. PRACTICAL APPLICATIONS

8.1. Flow and solute transport on an impervious irrigation border

The experimental data from [12] were used to validate the proposed models in cases of steady
and unsteady flows in conditions of high relative roughness. In that experiment, a free-draining
irrigation border 200m long and 2m wide, with a slope of S0 = 0.000671 was constructed and
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Figure 10. Simulated surface level longitudinal profiles for different times of cases (a) 1 and (b) 2.
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Figure 12. Measured and simulated advance times of cases (a) 1 and (b) 2.
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Figure 13. Measured and simulated time evolution of concentration of case 1 at: (a) x = 50m;
(b) x = 100m; and (c) x = 150m.
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Figure 14. Measured and simulated time evolution of concentration of case 2 at: (a) x = 50m;
(b) x = 100m; and (c) x = 150m.

covered with a plastic film. A fine layer gravel (with d50 of approximately 20mm) was added on
the top of the plastic film. Two unsteady flow experiments of water flow advancing over the dry
border bed were performed and will be simulated for calibration. In case 1, an inlet discharge of
Q = 0.0048m3/s was applied and, after 1033 s of water application, 7 kg of salt were released
during 180 s at the upstream end. The water inlet was interrupted at t = 2698 s. In case 2, the
inlet discharge was Q = 0.0118m3/s, 28 kg of salt were released during 360 s and the water
inflow was interrupted at t = 2265 s. For the bed roughness simulation, a Manning coefficient
n = 0.09 s/m1/3 was used and, for the longitudinal dispersion coefficient, model (6) was adopted.
From the computational point of view, a grid with 2000 nodes was involved, a CFL= 0.9 was
fixed all the time and the second order in space and time TVD scheme with characteristic limiting
discretization, ‘Superbee’ flux limiter and artificial diffusion (69) was applied.

In case 1, 5100 s of experiment were simulated and 3900 s in case 2. Figures 10 and 11
show longitudinal profiles of surface level (front advance) and solute concentration, respectively,
at different times for both cases. They are useful to see that the selected numerical method is
completely free from numerical oscillations even at the locations close to the advancing front.
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Figure 15. Petrol spill in the Ebro river: (a) longitudinal bed and water surface profiles; (b) longitudinal
concentration profiles at 1 and 2 h after the spill; and (c) time evolution of the plume of concentration

exceeding the dangerous threshold.

Figure 12 illustrates the good behaviour of the solution in the simulation of the front advance. In
both cases, the numerical advance has been compared with the measured advance. Figures 13 and
14 compare the time evolution of the measured and calculated concentration at several gauging
points for both cases 1 and 2, respectively. The results indicate that the accuracy provided by this
scheme is sufficient for this type of application. The observed differences can be attributed mostly
to the diffusion model, although it is remarkable that the simple Rutherford model, proposed for
river mixing with very different flow conditions, provides a reasonable approximation without any
fitting procedure. The simulation results are satisfactory since they accurately predict the advancing
velocity. However, the model overestimates the dispersion effect mainly in case 2.

8.2. Pollutant spill in a river

In order to show the practical application of the model in a river flow context, a hazardous and
instantaneous pollutant spill of 20 T of petrol at a point of a 11.4 km reach of the Ebro River
will be simulated. The solubility of the petrol at the typical temperature of the river water was
estimated as 0.03 kg/m3. For higher concentrations, the petrol was assumed to precipitate to the
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bottom remaining there. The steady annual base river discharge of 200m3/s was assumed. In a
first run, the steady-state water surface profile corresponding to that discharge in the river reach
was calculated. Figure 15(a) represents the bed and surface levels at steady state. The spill was
located at 700m of the upstream end. Figure 15(b) shows two concentration longitudinal profiles
at 1 and 2 h of the spill. The Spanish law establishes that 9.5mg/m3 is the limit of tolerance
for the pernicious influence of petrol concentration in riverine ecological systems. Figure 15(c)
represents the time evolution of borders of the contaminant cloud with a concentration exceeding
the dangerous limit.

9. CONCLUSIONS

A conservative formulation of the system of equations governing the water flow and the solute
transport has been adopted as the basis of our study. The formulation of several finite volume
conservative upwind schemes well suited for the numerical simulation of one-dimensional shallow-
water flow and solute transport has been provided. Two possibilities have been identified, separate
or coupled discretization, leading to different degrees of influence of the flow processes to the
solute transport at the discrete level.

It has been proved that well-balanced conservative upwind schemes based on a separate dis-
cretization of the scalar solute transport from the shallow-water equations are not able to preserve
uniform solute profiles in situations of unsteady subcritical flow even when using first-order meth-
ods. However, the coupled formulation and discretization of the system is proved to lead to the
correct solution in first-order approximations.

When seeking more accuracy, second-order TVD schemes can be applied. It has been shown
that a careful definition of the flux limiter function is required in order to preserve uniform solute
profiles in the solute distribution function in cases of unsteady subcritical flow.

The work shows that, in cases of subcritical unsteady irregular flow, the coupled discretization
is necessary but nevertheless not sufficient always to ensure concentration distributions free from
oscillations and a method of using an artificial diffusion in subcritical cases is proposed.

The validation test cases show the good performance of the second-order TVD schemes for the
coupled system formulation in cases of steady and unsteady flows.

APPENDIX A: PROPERTIES OF THE EULERIAN NUMERICAL SCHEMES

A.1. Conservation

The conservative form (1) can be integrated in a time interval T and in a domain length L to
obtain a global rule of conservation

∫ T

0

∫ L

0

(
�U
�t

+ �Fc

�x
+ �D

�x

)
dx dt =

∫ T

0

∫ L

0
S dx dt

⇒
∫ L

0
U(x, t) dx −

∫ L

0
U(x, 0) dx =

∫ T

0
[F(0, t) + D(0, t)] dt −

∫ T

0
[F(L , t) + D(L , t)] dt

+
∫ T

0

∫ L

0
S dx dt (A1)
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showing us that the time variation of the conserved variables is equal to the flux entering minus the
flux leaving the system plus the contribution of the source terms. When discretizing a conservation
law like (1), bad numerical approximations can lead to unacceptable error. Schemes approximating
the conservation equation (A1) correctly are called conservative schemes [5]. A definition of a
conservative scheme follows the structure proposed by Lax [25]:

�Un
i =�t

[
S∗
i − 1

�x
(F∗

i+(1/2) − F∗
i−(1/2))

]
(A2)

where F∗ and S∗ are the numerical flux and source term, respectively, and represent a suit-
able approximation to the physical flux and source term. � will be used for time increments
� f n = f n+1 − f n , and � represents spatial increment � fi+(1/2) = fi+1 − fi . The schemes so
defined are conservative since they produce a good approximation of (A1), provided that the
discretization of fluxes and source terms is consistent, that is,

F∗ ≈Fc + D, S∗ ≈Sc (A3)

Adding up all the increments defined by the numerical scheme (A2) in a grid of N spatial nodes
and M time steps, an approximation of the global conservation (A1) is obtained:

M−1∑
j=0

N−1∑
i=1

�U j
i �x ≈

∫ xN−(1/2)

x1/2
U(x, t M ) dx −

∫ xN−(1/2)

x1/2
U(x, t0) dx

M−1∑
j=0

N−1∑
i=1

(S∗) ji �x�t ≈
∫ t M

t0
dt
∫ xN−(1/2)

x1/2
S(x, t) dx

−
M−1∑
j=0

N−1∑
i=1

�t[(F∗) ji+(1/2) − (F∗) ji−(1/2)] =
M−1∑
j=0

�t[(F∗) jN−(1/2) − (F∗) j1/2]

≈
∫ t M

t0
[Fc(x1/2, t) + D(x1/2, t)] dt

−
∫ t M

t0
[Fc(xN−(1/2), t) + D(xN−(1/2), t)] dt

(A4)

A numerical flux FT can also be defined at the grid nodes. The difference in this flux across a
grid cell can be decomposed into incoming and outgoing parts. The schemes so built follow

�FT
i+(1/2) = FT

i+1 − FT
i = �FR

i+(1/2) + �FL
i+(1/2)

�Un
i = �t

[(
S − �F

�x

)L

i−(1/2)
+
(
S − �F

�x

)R

i+(1/2)

]
(A5)

This also leads to conservative schemes since this form can be shown to be equivalent to (A2) and
the following interface numerical flux can be defined [5, 6]:

F∗
i+(1/2) =FT

i + �FR
i+(1/2) =FT

i+1 − �FL
i+(1/2), S∗

i =SLi+(1/2) + SRi−(1/2) (A6)
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A conservative scheme can be derived by discretizing the characteristic form of Equation (14):

�Wn
i = �t

{
UL

i−(1/2)

(
P−1Snc − K�W

�x

)
i−(1/2)

+UR
i+(1/2)

(
P−1Snc − K�W

�x

)
i+(1/2)

− P−1

�x
(DR

i+(1/2) − DL
i−(1/2))

}
(A7)

with UL,R
i+(1/2) being the characteristic decomposition matrices. Multiplying back by P in order to

recover the physical variables, extracting P−1 and using (11), (A7) can be written as

�Un
i = �t

{[
PURP−1

(
Snc − J

�U
�x

)]
i+(1/2)

+
[
PULP−1

(
Snc − J

�U
�x

)]
i+(1/2)

− 1

�x
(DR

i+(1/2) − DL
i−(1/2))

}
(A8)

This scheme will be conservative if the following condition at the discrete level is enforced [6]:

Gn
i+(1/2) =

(
Snc − J

�U
�x

)
i+(1/2)

=
(
Sqc − �Fqc

�x

)
i+(1/2)

=
(
Sc − �Fc

�x

)
i+(1/2)

(A9)

which holds provided that

(I2)i+(1/2) = �(I1)i+(1/2) − Ai+(1/2)�hi+(1/2)

ui+(1/2) =
√
Ai+1ui+1 + √

Aiui√
Ai+1 + √

Ai
, si+(1/2) =

√
Ai+1si+1 + √

Ai si√
Ai+1 + √

Ai

(A10)

In order to complete the formulation, the choice of some average values remains open. The simplest
option has been used in this work:

Ai+(1/2) = Ai+1 + Ai

2
, �i+(1/2) = �i+1 + �i

2
, ci+(1/2) =

√
g
Ai+1 + Ai

Bi+1 + Bi
(A11)

The conservative decomposition matrices will be defined as

XR,L =PUR,LP−1, XR +XL =UR +UL = 1 (A12)

By defining, at the same time, the vectors

GR,L =XR,LG (A13)

the non-conservative, quasi-conservative and conservative forms of this scheme can be written as
follows:

�Un
i =�t

[
GR

i+(1/2) + GL
i−(1/2) − 1

�x
(DR

i+(1/2) − DL
i−(1/2))

]
(A14)

Since the three forms are equivalent, the simplest quasi-conservative is recommended [6].

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 56:1731–1764
DOI: 10.1002/fld



1760 J. BURGUETE, P. GARCÍA-NAVARRO AND J. MURILLO

The considered numerical schemes are conservative since they admit the following wave
decomposition:

• First-order upwind scheme with implicit diffusion:

FT
i = (Fc)ni , GL

i+(1/2) =
(
G+ − �

�U
�x

)n

i+(1/2)
+ 1

�x
Dn+�
i+(1/2)

GR
i+(1/2) =

(
G− + �

�U
�x

)n

i+(1/2)
− 1

�x
Dn+�
i+(1/2)

(A15)

• Second order in space and time TVD scheme with implicit diffusion and vectorial limiting
discretization:

FT
i = (Fc)ni

GL
i+(1/2) =

(
G+ − �

�U
�x

)n

i+(1/2)
− 1

2
(W+E+)ni−(1/2) + 1

2
(W−E−)ni+(3/2)

+ 1

�x
Dn+�
i+(1/2)

GR
i+(1/2) =

(
G− + �

�U
�x

)n

i+(1/2)
+ 1

2
(W+E+)ni−(1/2) − 1

2
(W−E−)ni+(3/2)

− 1

�x
Dn+�
i+(1/2)

(A16)

• Second order in space and time TVD scheme with implicit diffusion and characteristic limiting
discretization:

FT
i = (Fc)ni

GL
i+(1/2) =

(
G+ − �

�U
�x

)n

i+(1/2)
− 1

2
(PW+L+)ni−(1/2) + 1

2
(PW−L−)ni+(3/2)

+ 1

�x
Dn+�
i+(1/2)

GR
i+(1/2) =

(
G− + �

�U
�x

)n

i+(1/2)
+ 1

2
(PW+L+)ni−(1/2) − 1

2
(PW−L−)ni+(3/2)

− 1

�x
Dn+�
i+(1/2)

(A17)

A.2. TVD property

A general three-point scheme, applied to a scalar advection–diffusion equation, can be expressed as

�Un
i + A−�Un+1

i+(1/2) + A+�Un+1
i−(1/2) = B−�Un

i+(1/2) + B+�Un
i−(1/2) (A18)

Even though linear stability and numerical dissipation prevent any amplification of the perturba-
tions, they do not remove oscillations completely from the numerical solution. The total variation
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diminishing property was defined to meet this goal. Starting from the definition of the ‘Total
Variation’ of a numerical solution as

TVn =∑
i

|�Un
i+(1/2)| (A19)

a numerical scheme is said to be TVD (‘Total Variation Diminishing’) if [18]
TVn+1�TVn (A20)

Sufficient conditions (although not necessary) for ensuring that a general scheme like (A18) applied
to the linear scalar equation is TVD are [18]

A−�0, A+�0, B−�0, B+�0, B− − B+�1 (A21)

An unstable scheme cannot be TVD.
Making a linearized analysis, with A, K and u constants, the following coefficients of the

general scheme (A18) can be defined for the considered schemes:

• First-order upwind scheme with implicit diffusion:

A+ = �
K�t

�x2
, A− = −�

K�t

�x2
, B+ = −u+�t

�x
− (1 − �)

K�t

�x2

B− = −u−�t

�x
+ (1 − �)

K�t

�x2

(A22)

• Second order in space TVD scheme with implicit diffusion:

A+ = �
K�t

�x2
, A− =−�

K�t

�x2

B+
i+(1/2) = −

[
1 + 1

2
(�+)ni+(1/2) − 1

2

(�+�T+)ni−(1/2)

(�T+)ni+(1/2)

]
u+�t

�x
− (1 − �)

K�t

�x2

B−
i+(1/2) = −

[
1 + 1

2
(�−)ni+(1/2) − 1

2

(�−�T−)ni+(3/2)

(�T−)ni+(1/2)

]
u−�t

�x
+ (1 − �)

K�t

�x2

(A23)

• Second order in space and time TVD scheme with implicit diffusion:

A+ = �
K�t

�x2
, A− =−�

K�t

�x2

B+
i+(1/2) = −

{
1 + 1

2
(1 − �)ni+(1/2)

[
(�+)ni+(1/2) − (�+�E+)ni−(1/2)

(�E+)ni+(1/2)

]}
(�+)ni+(1/2)

− (1 − �)
K�t

�x2

B−
i+(1/2) = −

{
1 + 1

2
(1 + �)ni+(1/2)

[
(�−)ni+(1/2) − (�−�E−)ni+(3/2)

(�E−)ni+(1/2)

]}
(�−)ni+(1/2)

+ (1 − �)
K�t

�x2

(A24)
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Figure A1. Second-order TVD region for the flux limiter functions.

Applying the TVD conditions (A21) to second order in space TVD scheme with implicit
diffusion, the flux limiter will be a positive function so that

�(r) = 0 ∀r<0, �(r)�2r ∀r>0 (A25)

and this leads to the following conditions:

0���1, �t� �x2

[1 + 1
2 max (�)]|u|�x + (1 − �)2K

(A26)

It is usual to establish the restriction �(r)�2 in order to be able to work with time-step sizes up
to �t��x/2|u|. The intersection between the second-order region and the TVD region for the flux
limiter functions in the second order in space TVD scheme is represented in Figure A1. Many
particular flux limiter functions are defined in previous works [26–28]. We use the extreme values:

• ‘Superbee’ [26]: �(r) = max[0,min(1, 2r),min(2, r)]
• ‘Minmod’ [26]: �(r) = max[0,min(1, r)]
Applying the TVD conditions (A21) to second order in space and time TVD scheme with

implicit diffusion, the flux limiter will be a positive function so that

�(r) = 0 ∀r<0, �(r)�2r ∀r>0, �(r)�2 ∀r (A27)

The intersection between the second-order region and the TVD region for the flux limiter functions
in the second order in space and time TVD scheme is identical to the second order in space TVD
region, shown in Figure A1, and the flux limiter functions defined are also valid for this scheme.
Applying conditions (A21) to first-order upwind and second order in space and time TVD schemes
with implicit diffusion, both are TVD for

0���1, �t� �x2

|u|�x + (1 − �)2K
(A28)
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1764 J. BURGUETE, P. GARCÍA-NAVARRO AND J. MURILLO

26. Roe PL. Generalized formulation of TVD Lax–Wendroff schemes. ICASE Report 84-53, NASA CR-172478,
NASA Langley Research Center, 1984.

27. van Albada GD, van Leer B, Roberts WW. A comparative study of computational methods in cosmic gas
dynamics. Astronomy & Astrophysics 1982; 108:76–84.

28. van Leer B. Towards the ultimate conservative difference scheme II. Monotonicity, conservation combined in a
second order scheme. Journal of Computational Physics 1974; 14:361–370.

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 56:1731–1764
DOI: 10.1002/fld


